\(\int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx\) [95]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 357 \[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=-\frac {\cos (c+d x)}{b d}-\frac {\sqrt [3]{a} \operatorname {CosIntegral}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}+\frac {\sqrt [3]{-1} \sqrt [3]{a} \operatorname {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right ) \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}-\frac {(-1)^{2/3} \sqrt [3]{a} \operatorname {CosIntegral}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}-\frac {\sqrt [3]{-1} \sqrt [3]{a} \cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b^{4/3}}-\frac {\sqrt [3]{a} \cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b^{4/3}}-\frac {(-1)^{2/3} \sqrt [3]{a} \cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b^{4/3}} \]

[Out]

-cos(d*x+c)/b/d+1/3*(-1)^(1/3)*a^(1/3)*cos(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))*Si(-(-1)^(1/3)*a^(1/3)*d/b^(1/3)+d*
x)/b^(4/3)-1/3*a^(1/3)*cos(c-a^(1/3)*d/b^(1/3))*Si(a^(1/3)*d/b^(1/3)+d*x)/b^(4/3)-1/3*(-1)^(2/3)*a^(1/3)*cos(c
-(-1)^(2/3)*a^(1/3)*d/b^(1/3))*Si((-1)^(2/3)*a^(1/3)*d/b^(1/3)+d*x)/b^(4/3)-1/3*a^(1/3)*Ci(a^(1/3)*d/b^(1/3)+d
*x)*sin(c-a^(1/3)*d/b^(1/3))/b^(4/3)+1/3*(-1)^(1/3)*a^(1/3)*Ci((-1)^(1/3)*a^(1/3)*d/b^(1/3)-d*x)*sin(c+(-1)^(1
/3)*a^(1/3)*d/b^(1/3))/b^(4/3)-1/3*(-1)^(2/3)*a^(1/3)*Ci((-1)^(2/3)*a^(1/3)*d/b^(1/3)+d*x)*sin(c-(-1)^(2/3)*a^
(1/3)*d/b^(1/3))/b^(4/3)

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 357, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {3426, 2718, 3414, 3384, 3380, 3383} \[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=-\frac {\sqrt [3]{a} \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}+\frac {\sqrt [3]{-1} \sqrt [3]{a} \sin \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \operatorname {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b^{4/3}}-\frac {(-1)^{2/3} \sqrt [3]{a} \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}-\frac {\sqrt [3]{-1} \sqrt [3]{a} \cos \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b^{4/3}}-\frac {\sqrt [3]{a} \cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}-\frac {(-1)^{2/3} \sqrt [3]{a} \cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}-\frac {\cos (c+d x)}{b d} \]

[In]

Int[(x^3*Sin[c + d*x])/(a + b*x^3),x]

[Out]

-(Cos[c + d*x]/(b*d)) - (a^(1/3)*CosIntegral[(a^(1/3)*d)/b^(1/3) + d*x]*Sin[c - (a^(1/3)*d)/b^(1/3)])/(3*b^(4/
3)) + ((-1)^(1/3)*a^(1/3)*CosIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/3) - d*x]*Sin[c + ((-1)^(1/3)*a^(1/3)*d)/b^(
1/3)])/(3*b^(4/3)) - ((-1)^(2/3)*a^(1/3)*CosIntegral[((-1)^(2/3)*a^(1/3)*d)/b^(1/3) + d*x]*Sin[c - ((-1)^(2/3)
*a^(1/3)*d)/b^(1/3)])/(3*b^(4/3)) - ((-1)^(1/3)*a^(1/3)*Cos[c + ((-1)^(1/3)*a^(1/3)*d)/b^(1/3)]*SinIntegral[((
-1)^(1/3)*a^(1/3)*d)/b^(1/3) - d*x])/(3*b^(4/3)) - (a^(1/3)*Cos[c - (a^(1/3)*d)/b^(1/3)]*SinIntegral[(a^(1/3)*
d)/b^(1/3) + d*x])/(3*b^(4/3)) - ((-1)^(2/3)*a^(1/3)*Cos[c - ((-1)^(2/3)*a^(1/3)*d)/b^(1/3)]*SinIntegral[((-1)
^(2/3)*a^(1/3)*d)/b^(1/3) + d*x])/(3*b^(4/3))

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c + d*x], (a +
 b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1])

Rule 3426

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c +
 d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ
[p, -1]) && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {\sin (c+d x)}{b}-\frac {a \sin (c+d x)}{b \left (a+b x^3\right )}\right ) \, dx \\ & = \frac {\int \sin (c+d x) \, dx}{b}-\frac {a \int \frac {\sin (c+d x)}{a+b x^3} \, dx}{b} \\ & = -\frac {\cos (c+d x)}{b d}-\frac {a \int \left (-\frac {\sin (c+d x)}{3 a^{2/3} \left (-\sqrt [3]{a}-\sqrt [3]{b} x\right )}-\frac {\sin (c+d x)}{3 a^{2/3} \left (-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x\right )}-\frac {\sin (c+d x)}{3 a^{2/3} \left (-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x\right )}\right ) \, dx}{b} \\ & = -\frac {\cos (c+d x)}{b d}+\frac {\sqrt [3]{a} \int \frac {\sin (c+d x)}{-\sqrt [3]{a}-\sqrt [3]{b} x} \, dx}{3 b}+\frac {\sqrt [3]{a} \int \frac {\sin (c+d x)}{-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x} \, dx}{3 b}+\frac {\sqrt [3]{a} \int \frac {\sin (c+d x)}{-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x} \, dx}{3 b} \\ & = -\frac {\cos (c+d x)}{b d}+\frac {\left (\sqrt [3]{a} \cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\sin \left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{-\sqrt [3]{a}-\sqrt [3]{b} x} \, dx}{3 b}-\frac {\left (\sqrt [3]{a} \cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\sin \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x} \, dx}{3 b}+\frac {\left (\sqrt [3]{a} \cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\sin \left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x} \, dx}{3 b}+\frac {\left (\sqrt [3]{a} \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\cos \left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{-\sqrt [3]{a}-\sqrt [3]{b} x} \, dx}{3 b}+\frac {\left (\sqrt [3]{a} \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\cos \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x} \, dx}{3 b}+\frac {\left (\sqrt [3]{a} \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\cos \left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x} \, dx}{3 b} \\ & = -\frac {\cos (c+d x)}{b d}-\frac {\sqrt [3]{a} \operatorname {CosIntegral}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}+\frac {\sqrt [3]{-1} \sqrt [3]{a} \operatorname {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right ) \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}-\frac {(-1)^{2/3} \sqrt [3]{a} \operatorname {CosIntegral}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b^{4/3}}-\frac {\sqrt [3]{-1} \sqrt [3]{a} \cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b^{4/3}}-\frac {\sqrt [3]{a} \cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b^{4/3}}-\frac {(-1)^{2/3} \sqrt [3]{a} \cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b^{4/3}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.

Time = 0.11 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.61 \[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=-\frac {6 b \cos (c+d x)+i a d \text {RootSum}\left [a+b \text {$\#$1}^3\&,\frac {\cos (c+d \text {$\#$1}) \operatorname {CosIntegral}(d (x-\text {$\#$1}))-i \operatorname {CosIntegral}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})-i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))}{\text {$\#$1}^2}\&\right ]-i a d \text {RootSum}\left [a+b \text {$\#$1}^3\&,\frac {\cos (c+d \text {$\#$1}) \operatorname {CosIntegral}(d (x-\text {$\#$1}))+i \operatorname {CosIntegral}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})+i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))}{\text {$\#$1}^2}\&\right ]}{6 b^2 d} \]

[In]

Integrate[(x^3*Sin[c + d*x])/(a + b*x^3),x]

[Out]

-1/6*(6*b*Cos[c + d*x] + I*a*d*RootSum[a + b*#1^3 & , (Cos[c + d*#1]*CosIntegral[d*(x - #1)] - I*CosIntegral[d
*(x - #1)]*Sin[c + d*#1] - I*Cos[c + d*#1]*SinIntegral[d*(x - #1)] - Sin[c + d*#1]*SinIntegral[d*(x - #1)])/#1
^2 & ] - I*a*d*RootSum[a + b*#1^3 & , (Cos[c + d*#1]*CosIntegral[d*(x - #1)] + I*CosIntegral[d*(x - #1)]*Sin[c
 + d*#1] + I*Cos[c + d*#1]*SinIntegral[d*(x - #1)] - Sin[c + d*#1]*SinIntegral[d*(x - #1)])/#1^2 & ])/(b^2*d)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.37 (sec) , antiderivative size = 392, normalized size of antiderivative = 1.10

method result size
derivativedivides \(\frac {-\frac {d^{3} c^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}+\frac {d^{3} c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{b}-\frac {d^{3} c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1}^{2} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{b}-\frac {d^{3} \cos \left (d x +c \right )}{b}-\frac {d^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\left (-3 \textit {\_R1}^{2} b c +3 \textit {\_R1} b \,c^{2}+a \,d^{3}-c^{3} b \right ) \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b^{2}}}{d^{4}}\) \(392\)
default \(\frac {-\frac {d^{3} c^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}+\frac {d^{3} c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{b}-\frac {d^{3} c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1}^{2} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{b}-\frac {d^{3} \cos \left (d x +c \right )}{b}-\frac {d^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\left (-3 \textit {\_R1}^{2} b c +3 \textit {\_R1} b \,c^{2}+a \,d^{3}-c^{3} b \right ) \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b^{2}}}{d^{4}}\) \(392\)
risch \(\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right ) c^{3}}{6 d b}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {{\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right ) c^{3}}{6 d b}-\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{2 d b}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right ) c}{2 d b}+\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right ) c}{2 d b}+\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{2 d b}-\frac {\cos \left (d x +c \right )}{b d}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\left (-3 i b \textit {\_R1} \,c^{2}+3 \textit {\_R1}^{2} b c +a \,d^{3}-c^{3} b \right ) {\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{2 i c \textit {\_R1} -\textit {\_R1}^{2}+c^{2}}\right )}{6 d \,b^{2}}+\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\left (-3 i b \textit {\_R1} \,c^{2}+3 \textit {\_R1}^{2} b c +a \,d^{3}-c^{3} b \right ) {\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{2 i c \textit {\_R1} -\textit {\_R1}^{2}+c^{2}}\right )}{6 d \,b^{2}}\) \(746\)

[In]

int(x^3*sin(d*x+c)/(b*x^3+a),x,method=_RETURNVERBOSE)

[Out]

1/d^4*(-1/3*d^3*c^3/b*sum(1/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_R1)+Ci(d*x-_R1+c)*sin(_R1)),_R1=RootOf(_
Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))+d^3*c^2/b*sum(_R1/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_R1)+Ci(d
*x-_R1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))-d^3*c/b*sum(_R1^2/(_R1^2-2*_R1*c+c^2
)*(-Si(-d*x+_R1-c)*cos(_R1)+Ci(d*x-_R1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))-d^3/
b*cos(d*x+c)-1/3/b^2*d^3*sum((-3*_R1^2*b*c+3*_R1*b*c^2+a*d^3-b*c^3)/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_
R1)+Ci(d*x-_R1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3)))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 393, normalized size of antiderivative = 1.10 \[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=\frac {\left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )} {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} - i \, c\right )} + \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )} {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} + i \, c\right )} + \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )} {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} - i \, c\right )} + \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )} {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} + i \, c\right )} + 2 \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\rm Ei}\left (i \, d x + \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (i \, c - \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )} + 2 \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\rm Ei}\left (-i \, d x + \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (-i \, c - \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )} - 12 \, \cos \left (d x + c\right )}{12 \, b d} \]

[In]

integrate(x^3*sin(d*x+c)/(b*x^3+a),x, algorithm="fricas")

[Out]

1/12*((I*a*d^3/b)^(1/3)*(-I*sqrt(3) - 1)*Ei(-I*d*x + 1/2*(I*a*d^3/b)^(1/3)*(-I*sqrt(3) - 1))*e^(1/2*(I*a*d^3/b
)^(1/3)*(I*sqrt(3) + 1) - I*c) + (-I*a*d^3/b)^(1/3)*(-I*sqrt(3) - 1)*Ei(I*d*x + 1/2*(-I*a*d^3/b)^(1/3)*(-I*sqr
t(3) - 1))*e^(1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) + 1) + I*c) + (I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1)*Ei(-I*d*x + 1/
2*(I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1))*e^(1/2*(I*a*d^3/b)^(1/3)*(-I*sqrt(3) + 1) - I*c) + (-I*a*d^3/b)^(1/3)*(I*
sqrt(3) - 1)*Ei(I*d*x + 1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1))*e^(1/2*(-I*a*d^3/b)^(1/3)*(-I*sqrt(3) + 1) + I
*c) + 2*(-I*a*d^3/b)^(1/3)*Ei(I*d*x + (-I*a*d^3/b)^(1/3))*e^(I*c - (-I*a*d^3/b)^(1/3)) + 2*(I*a*d^3/b)^(1/3)*E
i(-I*d*x + (I*a*d^3/b)^(1/3))*e^(-I*c - (I*a*d^3/b)^(1/3)) - 12*cos(d*x + c))/(b*d)

Sympy [F]

\[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=\int \frac {x^{3} \sin {\left (c + d x \right )}}{a + b x^{3}}\, dx \]

[In]

integrate(x**3*sin(d*x+c)/(b*x**3+a),x)

[Out]

Integral(x**3*sin(c + d*x)/(a + b*x**3), x)

Maxima [F]

\[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{3} \sin \left (d x + c\right )}{b x^{3} + a} \,d x } \]

[In]

integrate(x^3*sin(d*x+c)/(b*x^3+a),x, algorithm="maxima")

[Out]

-1/2*((cos(c)^2 + sin(c)^2)*x^3*cos(d*x + c) + (x^3*cos(d*x + c)^2*cos(c) + x^3*cos(c)*sin(d*x + c)^2)*cos(d*x
 + 2*c) - 6*(((a*b*cos(c)^2 + a*b*sin(c)^2)*d*x^3 + (a^2*cos(c)^2 + a^2*sin(c)^2)*d)*cos(d*x + c)^2 + ((a*b*co
s(c)^2 + a*b*sin(c)^2)*d*x^3 + (a^2*cos(c)^2 + a^2*sin(c)^2)*d)*sin(d*x + c)^2)*integrate(1/2*x^2*cos(d*x + c)
/(b^2*d*x^6 + 2*a*b*d*x^3 + a^2*d), x) - 6*(((a*b*cos(c)^2 + a*b*sin(c)^2)*d*x^3 + (a^2*cos(c)^2 + a^2*sin(c)^
2)*d)*cos(d*x + c)^2 + ((a*b*cos(c)^2 + a*b*sin(c)^2)*d*x^3 + (a^2*cos(c)^2 + a^2*sin(c)^2)*d)*sin(d*x + c)^2)
*integrate(1/2*x^2*cos(d*x + c)/((b^2*d*x^6 + 2*a*b*d*x^3 + a^2*d)*cos(d*x + c)^2 + (b^2*d*x^6 + 2*a*b*d*x^3 +
 a^2*d)*sin(d*x + c)^2), x) + (x^3*cos(d*x + c)^2*sin(c) + x^3*sin(d*x + c)^2*sin(c))*sin(d*x + 2*c))/(((b*cos
(c)^2 + b*sin(c)^2)*d*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 + ((b*cos(c)^2 + b*sin(c)^2)*d*x^3 + (
a*cos(c)^2 + a*sin(c)^2)*d)*sin(d*x + c)^2)

Giac [F]

\[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{3} \sin \left (d x + c\right )}{b x^{3} + a} \,d x } \]

[In]

integrate(x^3*sin(d*x+c)/(b*x^3+a),x, algorithm="giac")

[Out]

integrate(x^3*sin(d*x + c)/(b*x^3 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \sin (c+d x)}{a+b x^3} \, dx=\int \frac {x^3\,\sin \left (c+d\,x\right )}{b\,x^3+a} \,d x \]

[In]

int((x^3*sin(c + d*x))/(a + b*x^3),x)

[Out]

int((x^3*sin(c + d*x))/(a + b*x^3), x)